You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

289 lines
11 KiB

# Copyright (c) 2008 Duncan Fordyce
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
import logging
import socket
import sys
import re
import string
import time
import threading
import os
import traceback
from oyoyo.parse import *
from oyoyo.cmdhandler import CommandError
import collections
class IRCClientError(Exception):
pass
def add_commands(d):
def dec(cls):
for c in d:
def func(x):
def gen(self, *a):
self.send(x.upper(), *a)
return gen
setattr(cls, c, func(c))
return cls
return dec
@add_commands(("join",
"mode",
"nick",
"part"))
class IRCClient:
""" IRC Client class. This handles one connection to a server.
This can be used either with or without IRCApp ( see connect() docs )
"""
def __init__(self, cmd_handler, **kwargs):
""" the first argument should be an object with attributes/methods named
as the irc commands. You may subclass from one of the classes in
oyoyo.cmdhandler for convenience but it is not required. The
methods should have arguments (prefix, args). prefix is
normally the sender of the command. args is a list of arguments.
Its recommened you subclass oyoyo.cmdhandler.DefaultCommandHandler,
this class provides defaults for callbacks that are required for
normal IRC operation.
all other arguments should be keyword arguments. The most commonly
used will be nick, host and port. You can also specify an "on connect"
callback. ( check the source for others )
Warning: By default this class will not block on socket operations, this
means if you use a plain while loop your app will consume 100% cpu.
To enable blocking pass blocking=True.
>>> class My_Handler(DefaultCommandHandler):
... def privmsg(self, prefix, command, args):
... print "%s said %s" % (prefix, args[1])
...
>>> def connect_callback(c):
... c.join('#myroom')
...
>>> cli = IRCClient(My_Handler,
... host="irc.freenode.net",
... port=6667,
... nick="myname",
... connect_cb=connect_callback)
...
>>> cli_con = cli.connect()
>>> while 1:
... cli_con.next()
...
"""
self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.nickname = ""
self.real_name = ""
self.host = None
self.port = None
self.connect_cb = None
self.blocking = True
self.__dict__.update(kwargs)
self.command_handler = cmd_handler(self)
self._end = 0
def send(self, *args, **kwargs):
""" send a message to the connected server. all arguments are joined
with a space for convenience, for example the following are identical
>>> cli.send("JOIN %s" % some_room)
>>> cli.send("JOIN", some_room)
In python 2, all args must be of type str or unicode, *BUT* if they are
unicode they will be converted to str with the encoding specified by
the 'encoding' keyword argument (default 'utf8').
In python 3, all args must be of type str or bytes, *BUT* if they are
str they will be converted to bytes with the encoding specified by the
'encoding' keyword argument (default 'utf8').
"""
# Convert all args to bytes if not already
encoding = kwargs.get('encoding') or 'utf_8'
bargs = []
for arg in args:
if isinstance(arg, str):
bargs.append(bytes(arg, encoding))
elif isinstance(arg, bytes):
bargs.append(arg)
elif arg is None:
continue
else:
raise IRCClientError('Refusing to send one of the args from provided: %s'
% repr([(type(arg), arg) for arg in args]))
msg = bytes(" ", "utf_8").join(bargs)
logging.info('---> send "%s"' % msg)
self.socket.send(msg + bytes("\r\n", "utf_8"))
def connect(self):
""" initiates the connection to the server set in self.host:self.port
and returns a generator object.
>>> cli = IRCClient(my_handler, host="irc.freenode.net", port=6667)
>>> g = cli.connect()
>>> while 1:
... g.next()
"""
try:
logging.info('connecting to %s:%s' % (self.host, self.port))
self.socket.connect(("%s" % self.host, self.port))
if not self.blocking:
self.socket.setblocking(0)
self.nick(self.nickname)
self.user(self.nickname, self.real_name)
if self.connect_cb:
self.connect_cb(self)
buffer = bytes()
while not self._end:
try:
buffer += self.socket.recv(1024)
except socket.error as e:
try: # a little dance of compatibility to get the errno
errno = e.errno
except AttributeError:
errno = e[0]
if not self.blocking and errno == 11:
pass
else:
raise e
else:
data = buffer.split(bytes("\n", "ascii"))
buffer = data.pop()
for el in data:
prefix, command, args = parse_raw_irc_command(el)
try:
self.command_handler.run(command, prefix, *args)
except CommandError:
# error will of already been logged by the handler
pass
yield True
finally:
if self.socket:
logging.info('closing socket')
self.socket.close()
def msg(self, user, msg):
for line in msg.split('\n'):
self.send("PRIVMSG", user, ":{0}".format(line))
def notice(self, user, msg):
for line in msg.split('\n'):
self.send("NOTICE", user, ":{0}".format(line))
def quit(self, msg):
self.send("QUIT :" + msg)
def identify(self, passwd, authuser="NickServ"):
self.msg(authuser, "IDENTIFY {0}".format(passwd))
def user(self, uname, rname):
self.send("USER", uname, self.host, self.host,
rname or uname)
class IRCApp:
""" This class manages several IRCClient instances without the use of threads.
(Non-threaded) Timer functionality is also included.
"""
class _ClientDesc:
def __init__(self, **kwargs):
self.con = None
self.autoreconnect = False
self.__dict__.update(kwargs)
def __init__(self):
self._clients = {}
self._timers = []
self.running = False
self.sleep_time = 0.5
def addClient(self, client, autoreconnect=False):
""" add a client object to the application. setting autoreconnect
to true will mean the application will attempt to reconnect the client
after every disconnect. you can also set autoreconnect to a number
to specify how many reconnects should happen.
warning: if you add a client that has blocking set to true,
timers will no longer function properly """
logging.info('added client %s (ar=%s)' % (client, autoreconnect))
self._clients[client] = self._ClientDesc(autoreconnect=autoreconnect)
def addTimer(self, seconds, cb):
""" add a timed callback. accuracy is not specified, you can only
garuntee the callback will be called after seconds has passed.
( the only advantage to these timers is they dont use threads )
"""
assert isinstance(cb, collections.Callable)
logging.info('added timer to call %s in %ss' % (cb, seconds))
self._timers.append((time.time() + seconds, cb))
def run(self):
""" run the application. this will block until stop() is called """
# TODO: convert this to use generators too?
self.running = True
while self.running:
found_one_alive = False
for client, clientdesc in self._clients.items():
if clientdesc.con is None:
clientdesc.con = client.connect()
try:
next(clientdesc.con)
except Exception as e:
logging.error('client error %s' % e)
logging.error(traceback.format_exc())
if clientdesc.autoreconnect:
clientdesc.con = None
if isinstance(clientdesc.autoreconnect, (int, float)):
clientdesc.autoreconnect -= 1
found_one_alive = True
else:
clientdesc.con = False
else:
found_one_alive = True
if not found_one_alive:
logging.info('nothing left alive... quiting')
self.stop()
now = time.time()
timers = self._timers[:]
self._timers = []
for target_time, cb in timers:
if now > target_time:
logging.info('calling timer cb %s' % cb)
cb()
else:
self._timers.append((target_time, cb))
time.sleep(self.sleep_time)
def stop(self):
""" stop the application """
self.running = False