You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
205 lines
6.6 KiB
205 lines
6.6 KiB
//Useful Websites |
|
// http://math.stackexchange.com/questions/406082/numerical-method-to-solve-a-trigonometric-cotangent-function-transient-heat |
|
// http://web.cecs.pdx.edu/~gerry/epub/pdf/transientConductionSphere.pdf |
|
// http://web.cecs.pdx.edu/~gerry/epub/ |
|
|
|
//Global Variables for Turkey |
|
density = 996; // kg/m3 Assuming Density of Water 1000 kg/m3 |
|
cp = 2810 // J/kg K for Turkey |
|
heatConvection = 5; // W/m2 K Some Reasonable estimate for natural Convection. Change as needed. 5-25 |
|
thermalConduct = 0.412 // W/m K // Chicken |
|
globalTime = 1; |
|
|
|
function celsiusToFarenheit(celsius) { |
|
farenheit = (celsius*(9/5)) + 32; |
|
return(farenheit) |
|
} |
|
|
|
function farenheitToCelsius (farenheit) { |
|
celsius = (farenheit*(9/5)) + 32; |
|
return(celsius) |
|
} |
|
|
|
function poundsToKilograms(pounds) { |
|
kilograms = (pounds * 0.453592); |
|
return(kilograms) |
|
} |
|
|
|
function calculateRadius(weight) { |
|
//Using Ratios for a rectangular Box Turkey |
|
ratioLvG=1.4; //1.4, Turkey length vs shoulder girth |
|
ratioLvH=2; //2, Turkey length vs height from resting position |
|
|
|
length = Math.pow(weight/((1/ratioLvG)*(1/ratioLvH)*density),(1/3)) |
|
depth = 1/(ratioLvG /length); |
|
height = 1/(ratioLvH /length); |
|
simpleRadius = length/2; //Doesn't take into account equal Volume |
|
|
|
rectangleVolume = depth*height*length*(1/3); //m^3 Multiple by 1/3 to account for triangular shape and empty Space |
|
complexRadius = Math.pow(rectangleVolume/((4/3)*Math.PI), 1/3); //Volume of 3D Box = 3D Sphere |
|
|
|
console.log("Simple Radius " + simpleRadius + " Meters") |
|
console.log("Complex Radius " + complexRadius + " Meters") |
|
return(complexRadius) |
|
} |
|
|
|
|
|
function findAllRoots(min,max,splitsNum,Biot) { |
|
var step = ( max - min ) / ( splitsNum - 1 ); |
|
var storage = []; |
|
for (var i = step; i < max; i=i+step ) { |
|
negativeTest = lambdaFormula(i-step, Biot)*lambdaFormula(i, Biot); |
|
if (negativeTest <= 0) { |
|
answer = bisectionMethod(i-step,i,Biot); |
|
if (answer !=undefined) { |
|
storage.push(answer); |
|
} |
|
} |
|
else { |
|
//console.log("No Bracketed Root " + negativeTest) |
|
} |
|
} |
|
return(storage) |
|
} |
|
|
|
function linspace(min, max, length) { |
|
var arr = new Array(length); |
|
var step = ( max - min ) / ( length - 1 ); |
|
for (var i = 0; i < length; ++i ) |
|
arr[i] = min + ( i * step ) |
|
return arr |
|
} |
|
|
|
function bisectionMethod(min,max,Biot) { |
|
errorTolerance = (1/Math.pow(10,8)) |
|
result = Infinity // some large value to ensure the calculation goes through. |
|
negativeTest =lambdaFormula(min, Biot)*lambdaFormula(max, Biot) |
|
if (negativeTest <=0 ) { |
|
var antiFreeze=0; |
|
while (Math.abs(result) > errorTolerance && antiFreeze<=500) { //The greater the antiFreeze, the more wasted cycles around a singularity |
|
lambdaN = (min+max)/2 |
|
result=lambdaFormula(lambdaN, Biot) |
|
if (Math.abs(result) <= errorTolerance && result<=errorTolerance) { |
|
return (lambdaN); //At Root |
|
} |
|
else if ((lambdaFormula(min, Biot)*lambdaFormula(lambdaN, Biot))>=0) { |
|
min=lambdaN; |
|
} |
|
else if ((lambdaFormula(max, Biot)*lambdaFormula(lambdaN, Biot))>=0) { |
|
max=lambdaN; |
|
} |
|
antiFreeze++ |
|
} |
|
} |
|
} |
|
|
|
function lambdaFormula(lambdaN, Biot) { |
|
result = 1-lambdaN*(1/Math.tan(lambdaN))-Biot; |
|
return(result) |
|
} |
|
|
|
function oven() { |
|
this.tempInfini=20; //C |
|
this.setTemp = 20; |
|
var proportional = 0.1; // This value is arbitrary to how fast you want the temperatures to converge. (Or oscillate, which could be realistic as well) |
|
var errorTolerance = 5; //Stove is accurate to 1 degree Celcius Should hopefully oscillate below that value. |
|
|
|
this.changeTemp = function(setTemp) { |
|
this.setTemp = setTemp; |
|
} |
|
|
|
this.equalizeTemp = function() { // Equalize Temp will need to be sent each time iteration |
|
var error = Math.abs(this.setTemp-this.tempInfini); |
|
if (this.setTemp>this.tempInfini) { |
|
this.tempInfini = this.tempInfini + error*proportional; |
|
} |
|
else if (this.setTemp<this.tempInfini) { |
|
this.tempInfini = this.tempInfini - error*proportional; |
|
} |
|
if (error>errorTolerance) { |
|
return (true) //Need to run the Heat Calculations again next cycle |
|
} |
|
} |
|
} |
|
|
|
function layerModel(name,radiusPercent) { |
|
this.name = name; |
|
this.radiusPercent=radiusPercent; |
|
this.initialTemp = 20; |
|
this.waterContent =100000; |
|
this.Qdot = 0; |
|
this.finalTemperature = 20; |
|
} |
|
|
|
|
|
function turkeyModel(weight) { |
|
|
|
this.totalRadius = calculateRadius(weight) |
|
this.skin = new layerModel("Skin",0.85) |
|
this.body = new layerModel("Body",0.45) |
|
this.core = new layerModel("Core",0.01) |
|
|
|
this.updateLayerTemps = function() { |
|
this.skin.finalTemperature = transientSphereSeries (this.skin.radiusPercent*this.totalRadius,this.totalRadius,this.skin.initialTemp,ovenObject.tempInfini,globalTime) |
|
this.skin.initialTemp = this.skin.finalTemperature; |
|
|
|
this.body.finalTemperature = transientSphereSeries (this.body.radiusPercent*this.totalRadius,this.totalRadius,this.body.initialTemp,ovenObject.tempInfini,globalTime) |
|
this.body.initialTemp = this.body.finalTemperature; |
|
|
|
this.core.finalTemperature = transientSphereSeries (this.core.radiusPercent*this.totalRadius,this.totalRadius,this.core.initialTemp,ovenObject.tempInfini,globalTime) |
|
this.core.initialTemp = this.core.finalTemperature; |
|
} |
|
} |
|
|
|
var oldBiot=null; |
|
function transientSphereSeries (rPosition,rTotal,tempInitial,tempInfini,t) { |
|
var min = 0; |
|
var max = 1000; // This are for setting Lambda boundries and nothing else |
|
|
|
var sum=0; |
|
var alpha = thermalConduct/(density*cp) |
|
//console.log("Alpha is " + alpha) |
|
|
|
var Fourier = (alpha*t)/Math.pow(rTotal,2) |
|
//console.log("Fourier is " + Fourier) |
|
|
|
var biotNum = heatConvection * rTotal/thermalConduct |
|
|
|
if (biotNum != oldBiot) { |
|
console.log("Recalculating Lambda Terms") |
|
lambdaTerms = findAllRoots(min,max,max*Math.PI*10,biotNum) |
|
oldBiot = biotNum; |
|
} |
|
|
|
//console.log("The Biot Value is " + biotNum) |
|
|
|
for (var i = 0; i<lambdaTerms.length; i++) { |
|
lambdaN = lambdaTerms[i] |
|
sinPortion= Math.sin(lambdaN*rPosition/rTotal)/(lambdaN*rPosition/rTotal); |
|
exponentialPortion = (1/Math.exp(Math.pow(lambdaN,2)*Fourier)) |
|
frontCoefficientPortion = 4*(Math.sin(lambdaN)-(lambdaN*Math.cos(lambdaN)))/ (2*lambdaN-Math.sin(2*lambdaN)) |
|
sum = frontCoefficientPortion*exponentialPortion*sinPortion + sum |
|
} |
|
tempAtTimeAndRadius=(sum*(tempInitial-tempInfini))+tempInfini |
|
|
|
console.log("The Temperature at radius " + rPosition + " m and time " + t + " seconds is " + tempAtTimeAndRadius + " C or " + celsiusToFarenheit(tempAtTimeAndRadius) + " F"); |
|
return(tempAtTimeAndRadius) |
|
} |
|
|
|
|
|
//Running the Program Stuff |
|
|
|
ovenObject = new oven (); |
|
turkey = new turkeyModel(8); |
|
|
|
setInterval(function(){time()},20); |
|
|
|
function time() { |
|
console.clear() |
|
if (ovenObject.equalizeTemp() ) { |
|
globalTime = 0; //Reset the model's time calculation if there are major changes in the tolerance of the temperature |
|
} |
|
else {globalTime = globalTime +60 } |
|
console.log(ovenObject.tempInfini) |
|
turkey.updateLayerTemps(); |
|
} |