function TurkeyLayer ( name , percentRadius , turkeyModel , ovenModel ) {
var that = this ;
this . name = name ;
this . percentRadius = percentRadius ;
this . initialTemp = 20 ;
this . waterLost = 0 ;
this . finalTemperature = 20 ;
this . cookCondition = "Raw" ;
return {
updateTemperatureTick : function ( ) {
that . finalTemperature = UtilityFunctions . transientSphereSeries ( turkeyModel . density ,
turkeyModel . thermalConduct ,
turkeyModel . heatConvection ,
turkeyModel . cp ,
percentRadius * turkeyModel . totalRadius ,
turkeyModel . totalRadius ,
that . initialTemp ,
ovenModel . steadyTemp ,
ovenModel . globalTime ) ;
that . waterLost = that . waterLost + UtilityFunctions . waterLoss ( that . finalTemperature ) ;
that . cookCondition = UtilityFunctions . cookCondition ( that . waterLost ) ;
if ( DEBUG ) console . log ( that . name + ": " + that . waterLost + " " + that . cookCondition ) ;
} ,
resetLayerTemps : function ( ) {
that . initialTemp = that . finalTemperature ;
} ,
getCondition : function ( ) {
return that . cookCondition ;
} ,
getTemperature : function ( ) {
return that . finalTemperature ;
}
}
}
function TurkeyModel ( weight , ovenModel ) {
this . density = 1050 ; // kg/m3 Assuming Density of Water 1000 kg/m3
this . cp = 2000 ; // 2810 J/kg K for Turkey. Extra is to semi-account for water evaporation energy
this . heatConvection = 9 ; // W/m2 K Some Reasonable estimate for natural Convection. Change as needed. 5-25
this . thermalConduct = 0.412 ; // W/m K // Chicken
this . skin = { } ;
this . body = { } ;
this . core = { } ;
this . totalRadius = UtilityFunctions . calculateRadius ( weight , this . density ) ;
this . totalLayers = [ new TurkeyLayer ( "Skin" , 0.85 , this , ovenModel ) ,
new TurkeyLayer ( "Body" , 0.45 , this , ovenModel ) ,
new TurkeyLayer ( "Core" , 0.01 , this , ovenModel ) ] ;
// Whenever temperature is changed
this . updateLayerTemps = function ( ) {
for ( var i in this . totalLayers ) {
this . totalLayers [ i ] . updateTemperatureTick ( ) ;
}
} ;
this . resetLayerTemps = function ( ) {
for ( var i in this . totalLayers ) {
this . totalLayers [ i ] . resetLayerTemps ( ) ;
}
} ;
}
function OvenModel ( turkeyWeight , gameState ) {
var that = this ;
this . tempInfini = 20 ; //C
this . setTemp = 20 ;
this . steadyTemp = 20 ;
this . steadyTimer = 0 ;
this . globalTime = 0 ;
var turkey = new TurkeyModel ( 9.07185 , this ) ;
var proportional = 0.004 ; // This value is arbitrary to how fast you want the temperatures to converge. (Or oscillate, which could be realistic as well)
var errorTolerance = 10 ; //Stove is accurate to 1 degree Celcius Should hopefully oscillate below that value.
// Equalize temp will need to be sent each time iteration
this . equalizeTemp = function ( ) {
var error = Math . abs ( this . setTemp - this . tempInfini ) ;
if ( this . setTemp > this . tempInfini ) {
this . tempInfini = this . tempInfini + error * proportional ;
}
else if ( this . setTemp < this . tempInfini ) {
this . tempInfini = this . tempInfini - error * proportional ;
}
if ( error > errorTolerance ) {
if ( this . steadyTimer >= 80 ) {
//Reset the model's time calculation if there are major changes in the tolerance of the temperature or the steady timer expires
this . steadyTimer = 0 ;
this . globalTime = 0 ;
this . steadyTemp = this . tempInfini
turkey . resetLayerTemps ( ) ;
}
return ( true ) ;
}
}
return {
getTurkeyState : function ( ) {
return {
"skin" : {
"temp" : turkey . totalLayers [ 0 ] . getTemperature ( ) ,
"cond" : turkey . totalLayers [ 0 ] . getCondition ( )
} ,
"body" : {
"temp" : turkey . totalLayers [ 1 ] . getTemperature ( ) ,
"cond" : turkey . totalLayers [ 1 ] . getCondition ( )
} ,
"core" : {
"temp" : turkey . totalLayers [ 2 ] . getTemperature ( ) ,
"cond" : turkey . totalLayers [ 2 ] . getCondition ( )
}
} ;
} ,
changeTemp : function ( setTemp ) {
if ( DEBUG ) console . log ( "temp changed to " + setTemp ) ;
that . setTemp = setTemp ;
} ,
// set the tempInfini
setRawTemp : function ( newTemp ) {
if ( DEBUG ) console . log ( "raw temp changed to" + that . tempInfini ) ;
that . tempInfini = newTemp ;
} ,
getRawTemp : function ( ) {
return that . tempInfini ;
} ,
getCookTime : function ( ) {
return that . globalTime ;
} ,
secondTick : function ( ) {
that . globalTime = that . globalTime + 1 ;
that . steadyTimer = that . steadyTimer + 1 ;
if ( that . equalizeTemp ( ) ) {
// Turn on oven light
gameState . pubsub . publish ( "OvenLight" , "On" ) ;
}
else {
that . steadyTemp = that . tempInfini ;
// Turn off oven light
gameState . pubsub . publish ( "OvenLight" , "Off" ) ;
}
if ( DEBUG ) console . log ( "Steady Temp " + that . steadyTemp )
if ( DEBUG ) console . log ( "Steady Timer " + that . steadyTimer )
if ( DEBUG ) console . log ( "Oven Temp " + that . tempInfini )
turkey . updateLayerTemps ( ) ;
}
}
}
UtilityFunctions = {
// Cache the lambda if the Biot number does not change, to avoid expensive root-finding operations
cachedBiot : null ,
cachedLambda : null ,
// Using Ratios for a rectangular Box Turkey
calculateRadius : function ( weight , density ) {
var ratioLvG = 1.4 ; //1.4, Turkey length vs shoulder girth
var ratioLvH = 2 ; //2, Turkey length vs height from resting position
var length = Math . pow ( weight / ( ( 1 / ratioLvG ) * ( 1 / ratioLvH ) * density ) , ( 1 / 3 ) )
var depth = 1 / ( ratioLvG / length ) ;
var height = 1 / ( ratioLvH / length ) ;
var simpleRadius = length / 2 ; //Doesn't take into account equal Volume
var rectangleVolume = depth * height * length ; //m^3 Multiple by 1/4 to account for triangular shape and empty Space
var complexRadius = Math . pow ( rectangleVolume / ( ( 4 / 3 ) * Math . PI ) , 1 / 3 ) ; //Volume of 3D Box = 3D Sphere
//if(DEBUG) console.log("Simple Radius " + simpleRadius + " Meters")
//if(DEBUG) console.log("Complex Radius " + complexRadius + " Meters")
return complexRadius ;
} ,
findAllRoots : function ( min , max , splitsNum , Biot ) {
var step = ( max - min ) / ( splitsNum - 1 ) ;
var answer ;
var negativeTest ;
var storage = [ ] ;
for ( var i = step ; i < max ; i = i + step ) {
negativeTest = this . lambdaFormula ( i - step , Biot ) * this . lambdaFormula ( i , Biot ) ;
if ( negativeTest <= 0 ) {
answer = this . bisectionMethod ( i - step , i , Biot ) ;
if ( answer != undefined ) {
storage . push ( answer ) ;
}
}
else {
//if(DEBUG) console.log("No Bracketed Root " + negativeTest)
}
}
return storage ;
} ,
sphereVolume : function ( radius ) {
return ( ( 4 / 3 ) * Math . PI * Math . pow ( radius , 3 ) )
} ,
waterLoss : function ( temperature ) {
return ( Math . pow ( 10 , ( temperature - 20 ) / 80 ) - 1 )
} ,
bisectionMethod : function ( min , max , Biot ) {
errorTolerance = ( 1 / Math . pow ( 10 , 8 ) )
result = Infinity // some large value to ensure the calculation goes through.
negativeTest = this . lambdaFormula ( min , Biot ) * this . lambdaFormula ( max , Biot )
if ( negativeTest <= 0 ) {
var antiFreeze = 0 ;
while ( Math . abs ( result ) > errorTolerance && antiFreeze <= 500 ) { //The greater the antiFreeze, the more wasted cycles around a singularity
lambdaN = ( min + max ) / 2
result = this . lambdaFormula ( lambdaN , Biot )
if ( Math . abs ( result ) <= errorTolerance && result <= errorTolerance ) {
return ( lambdaN ) ; //At Root
}
else if ( ( this . lambdaFormula ( min , Biot ) * this . lambdaFormula ( lambdaN , Biot ) ) >= 0 ) {
min = lambdaN ;
}
else if ( ( this . lambdaFormula ( max , Biot ) * this . lambdaFormula ( lambdaN , Biot ) ) >= 0 ) {
max = lambdaN ;
}
antiFreeze ++
}
}
} ,
lambdaFormula : function ( lambdaN , Biot ) {
var result = 1 - lambdaN * ( 1 / Math . tan ( lambdaN ) ) - Biot ;
return ( result )
} ,
transientSphereSeries : function ( density , thermalConduct , heatConvection , cp , rPosition , rTotal , tempInitial , tempInfini , t ) {
var min = 0 ;
var max = 10000 ; // This are for setting Lambda boundaries and nothing else
var sum = 0 ;
var alpha = thermalConduct / ( density * cp ) ;
var lambdaN ;
var sinPortion ;
var exponentialPortion ;
var frontCoefficientPortion ;
//if(DEBUG) console.log("Alpha is " + alpha)
var Fourier = ( alpha * t ) / Math . pow ( rTotal , 2 )
//if(DEBUG) console.log("Fourier is " + Fourier)
var biotNum = heatConvection * rTotal / thermalConduct
if ( biotNum != this . cachedBiot ) {
if ( DEBUG ) console . log ( "Recalculating Lambda Terms" )
this . cachedLambda = this . findAllRoots ( min , max , max * Math . PI * 10 , biotNum )
this . cachedBiot = biotNum ;
}
//if(DEBUG) console.log("The Biot Value is " + biotNum)
for ( var i = 0 ; i < this . cachedLambda . length ; i ++ ) {
var lambdaN = this . cachedLambda [ i ] ;
var sinPortion = Math . sin ( lambdaN * rPosition / rTotal ) / ( lambdaN * rPosition / rTotal ) ;
var exponentialPortion = ( 1 / Math . exp ( Math . pow ( lambdaN , 2 ) * Fourier ) ) ;
var frontCoefficientPortion = 4 * ( Math . sin ( lambdaN ) - ( lambdaN * Math . cos ( lambdaN ) ) ) / ( 2 * lambdaN - Math . sin ( 2 * lambdaN ) ) ;
sum = frontCoefficientPortion * exponentialPortion * sinPortion + sum ;
}
tempAtTimeAndRadius = ( sum * ( tempInitial - tempInfini ) ) + tempInfini
if ( DEBUG ) console . log ( "The Temperature at radius " + rPosition + " m and time " + t / 60 / 60 + " hours is " + tempAtTimeAndRadius + " C or " + this . C2F ( tempAtTimeAndRadius ) + " F" ) ;
return ( tempAtTimeAndRadius )
} ,
/* Utility Functions */
C2F : function ( celsius ) {
return ( ( celsius * ( 9 / 5 ) ) + 32 ) ;
} ,
F2C : function ( farenheit ) {
return ( ( farenheit - 32 ) * ( 5 / 9 ) ) ;
} ,
lbs2kgs : function ( pounds ) {
return pounds * 0.453592
} ,
randRange : function ( min , max ) {
return Math . floor ( Math . random ( ) * ( max - min + 1 ) ) + min ;
} ,
cookCondition : function ( cookValue , volume ) {
var multiplier = 1 ;
if ( cookValue >= multiplier * 600000 ) {
return [ "Fire" , ( cookValue - 600000 ) / ( multiplier * 600000 ) , "fire" ] ;
}
else if ( cookValue >= multiplier * 250000 ) {
return [ "Burnt" , ( cookValue - 250000 ) / ( multiplier * 600000 ) , "burnt" ] ;
}
else if ( cookValue >= multiplier * 150000 ) {
return [ "Dry" , ( cookValue - 150000 ) / ( multiplier * 250000 ) , "dry" ] ;
}
else if ( cookValue >= multiplier * 85000 ) {
return [ "Cooked" , ( cookValue - 12000 ) / ( multiplier * 150000 ) , "overcooked" ] ;
}
else if ( cookValue >= multiplier * 12000 ) {
return [ "Cooked" , ( cookValue - 12000 ) / ( multiplier * 150000 ) , "cooked" ] ;
}
else if ( cookValue >= multiplier * 10000 ) {
return [ "Undercooked" , ( cookValue - 5000 ) / ( multiplier * 12000 ) , "slightly cooked" ] ;
}
else if ( cookValue >= multiplier * 5000 ) {
return [ "Undercooked" , ( cookValue - 5000 ) / ( multiplier * 12000 ) , "undercooked" ] ;
}
else {
return [ "Raw" , 1 , "raw" ] ;
}
}
}
//Running the Program Stuff
/ *
var ovenObject = new OvenModel ( ) ;
var turkey = new TurkeyModel ( 9.07185 , ovenObject ) ;
globalTime = 0 ;
setInterval ( function ( ) { ovenObject . secondTick ( ) ; } , 10 ) ;
* /